Reversible self-assembly of patchy particles into monodisperse icosahedral clusters.
نویسندگان
چکیده
We systematically study the design of simple patchy sphere models that reversibly self-assemble into monodisperse icosahedral clusters. We find that the optimal patch width is a compromise between structural specificity (the patches must be narrow enough to energetically select the desired clusters) and kinetic accessibility (they must be sufficiently wide to avoid kinetic traps). Similarly, for good yields the temperature must be low enough for the clusters to be thermodynamically stable, but the clusters must also have enough thermal energy to allow incorrectly formed bonds to be broken. Ordered clusters can form through a number of different dynamic pathways, including direct nucleation and indirect pathways involving large disordered intermediates. The latter pathway is related to a reentrant liquid-to-gas transition that occurs for intermediate patch widths upon lowering the temperature. We also find that the assembly process is robust to inaccurate patch placement up to a certain threshold and that it is possible to replace the five discrete patches with a single ring patch with no significant loss in yield.
منابع مشابه
Self-assembly of monodisperse clusters: Dependence on target geometry.
We apply a simple model system of patchy particles to study monodisperse self-assembly using the Platonic solids as target structures. We find marked differences between the assembly behaviors of the different systems. Tetrahedra, octahedral, and icosahedra assemble easily, while cubes are more challenging and dodecahedra do not assemble. We relate these differences to the kinetics and thermody...
متن کاملNonlinear machine learning of patchy colloid self-assembly pathways and mechanisms.
Bottom-up self-assembly offers a means to synthesize materials with desirable structural and functional properties that cannot easily be fabricated by other techniques. An improved understanding of the structural pathways and mechanisms by which self-assembling materials spontaneously form from their constituent building blocks is of value in understanding the fundamental principles of assembly...
متن کاملJanus and multiblock colloidal particles.
We review recent developments in the synthesis and self-assembly of Janus and multiblock colloidal particles, highlighting new opportunities for colloid science and technology that are enabled by encoding orientational order between particles as they self-assemble. Emphasizing the concepts of molecular colloids and colloid valence unique to such colloids, we describe their rational self-assembl...
متن کاملSurface roughness directed self-assembly of patchy particles into colloidal micelles.
Colloidal particles with site-specific directional interactions, so called "patchy particles", are promising candidates for bottom-up assembly routes towards complex structures with rationally designed properties. Here we present an experimental realization of patchy colloidal particles based on material independent depletion interaction and surface roughness. Curved, smooth patches on rough co...
متن کاملMolecular dynamics simulation of reversibly self-assembling shells in solution using trapezoidal particles.
The self-assembly of polyhedral shells, each constructed from 60 trapezoidal particles, is simulated using molecular dynamics. The spatial organization of the component particles in this shell is similar to the capsomer proteins forming the capsid of a T=1 virus. Growth occurs in the presence of an atomistic solvent and, under suitable conditions, achieves a high yield of complete shells. The s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 127 8 شماره
صفحات -
تاریخ انتشار 2007